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A time-dependent numerical model of the astron, with which injection and trapping 
can be studied in detail, has been developed. The effects due to the resistors and neutrali- 
zation have been included. The model is axially symmetric. The E-layer electrons are 
simulated by many thousands of finite-size superparticles, which move in the r-z domain 
and have velocity components v, , vg , and v, . The model is relativistic and the electro- 
magnetic fields are obtained by solving four wave equations - three for the vector 
potential and one for the scalar potential. The E-layer current and the current induced 
in the resistor wires are included in the above field equations. The computed self-fields 
are added to the external field to give the field configuration as a function of time. Results 
of multiple pulse injection are presented. 

I. INTRODUCTION 

In the astron controlled-fusion experiment, a beam of relativistic electrons is 
injected into an evacuated cylindrical region in which an externally applied 
magnetic field has been established. The cylindrical region is bounded by two 
concentric aluminium shells. The outer shell is 12 cm thick and its inner radius 
is 72 cm. The thin inner shell has a radius of 20 cm. The velocity of the injected 
electrons makes an angle of 85” with the axis of symmetry. In order to facilitate 
trapping, cylinders of resistor wires, azimuthally oriented, have been installed 
at a radius of 52 cm and at a radius of 30 cm. The electrons that are trapped form 
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a cylindrical layer (shell) known as the E layer. The mean radius of the E layer is 
40 cm; its length varies from 1 to 4 m, depending on the initial conditions. The 
aim is to confine a sufficient number of electrons in the E layer so that the self 
field of the E layer exceeds the applied field. The resulting field configuration 
contains a region that is minimum 1 B 1 and has no loss cones. 

The E layer consists of about 1015 electrons. It is, of course, impractical to 
follow each electron individually. Furthermore, we are not interested in the 
position and velocity of each electron; we are only interested in the electron 
density. Since the electron density in the E layer is about 108/cm3 it is logical to 
treat the E layer as an electron fluid. The electron density can then be obtained 
from the solution of the Vlasov equation. Neil and Heckrotte [1], Woods [2], and 
Brettschneider and Weiss [3] examined the process of E layer formation in one 
dimension. In their model the electric and magnetic fields are obtained from the 
solution of Poisson’s equation for the scalar and vector potentials, respectively. 
Retardation effects are neglected. The electron distribution in the E layer is obtained 
by integrating the Vlasov equation. Neil and Heckrotte and Brettschneider and 
Weiss integrate the Vlasov equation by using a finite difference fixed mesh point 
scheme, whereas Woods uses a water bag model. 

A two-dimensional model was constructed by J. Killeen [4, 51. Killeen uses a 
fixed mesh point, finite difference scheme to integrate the Vlasov equation. 
Complete neutralization is assumed; so the electric field is set equal to zero. The 
magnetic field is obtained by solving the wave equation for the azimuthal com- 
ponent of the vector potential. This method of obtaining the field is to be preferred 
since it include retardation. In view of the high axial and radial velocities (- 0.5 c) 
achieved by the electrons, it is difficult to justify the neglect of retardation effects. 

An alternate approach, which we use here, is to approximate the E layer by a 
large number of particles and follow each particle individually. The electron 
density is, then, obtained from the particle density. The force on a particle is 
obtained from the total electromagnetic field, and its trajectory is determined 
from the solution of the relativistic equations of motion. 

The number of particles used must be large enough to give an accurate statistical 
representation of the E layer and yet small enough to be practical. In practice, 
we use between lo4 and 3 x IO4 particles. The principal advantage of this method 
over the fluid method is that it requires considerably less computation time to solve 
a given problem, and is more accurate for injection problems. 

The computation proceeds as follows: First the charge and current densities 
are determined from the known initial positions and initial velocities of the 
particles. These charge and current densities are then used to determine the vector 
and scalar potentials by solving the respective wave equations. The new values of 
the vector and scalar potentials are used to calculate the force on each particle. 
These forces are used to move each particle in accordance with the relativistic 
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equations of motion. The above process is then repeated with the newly calculated 
positions and velocities. 

The astron geometry is axisymmetric, and it is experimentally observed that the 
E layer, during most of its life, is also essentially axially symmetric. We therefore 
feel that the assumption of axial symmetry is a reasonable one to make. 

In Section II the mathematical model is presented. The field equations, boundary 
conditions, and equations of motion are discussed in detail. Features which are 
specific to the Astron are introduced in Section III. The difference approximations 
are described in Section IV, and an energy check is described in Section V. In 
Section VI we discuss the computational results of a typical problem where five 
consecutive pulses are injected. Particular attention is given to the graphical 
output of the code. 

II. MATHEMATICAL MODEL 

A. Field Equations 

If we employ the ralations 

B=VxA, E = -04 - (l/c)(U/at), V . A + (l/c)(+/at) = 0, (1) 

with Maxwell’s equations, we obtain the following wave equations: 

PA - (l/c2)(a2A/8t2) = -(4n/c)(j + jr& (2) 

v2+ - (l/c”)(az+/atz) = -47rp, (3) 

where A and I$ are the vector and scalar potentials; j, j,,, , and p are the E-layer 
current density, resistor current density, and the charge density, respectively. 

Assuming axial symmetry, Eqs. (2) and (3) become, in cylindrical coordinates, 
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B. Boundary Conditions 
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The domain of the model consists of two concentric grounded cylinders as 
shown in Fig. 1. The walls of the cylinders are assumed to be perfect conductors. 
This assumption is legitimate because of the short time scales. The boundary 
conditions at a perfect conductor are 

B, = 0, E,, = 0. 

r rRj RR 

(8) 

r R2 

z1 z2 

FIG. 1. Domain of the model: R, is the radius of the cantilever, RR is the radius of the resistors, 
and R, is the inner radius of the outer wall. 

These conditions are satisfied by 

Aeint(r, z) = 0 at all boundaries, (9) 

$(r, z) = 0 at all boundaries and outside resistor layer, (10) 

Az(r, z) = 0 at r = rl , r2 , for all z, (11) 

A,(r,z) ==Oatz=z,,z,,forallr, (12) 

where Aernt is that part of A0 which is generated by internal sources, i.e., currents 
in the E layer and in the resistors. The rest of A, , henceforth designated A,,,il , 
is generated by current in the external coils. These currents are dc. Hence, the 
A,,,il has ample time to diffuse through the walls. The remaining boundary 
conditions are obtained from the gauge condition 

V . A + (l/c)(~+/~t) = 0. (13) 
They are 

Wr[r40-, 41 Ir=T1,TB = 0 for all z, (14) 
and 

VzCA(r, 41 /z=z1.z2 = 0 for all r. (13 
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C. Superparticle Model 

The superparticles in this model are composed of a large number of electrons 
uniformly distributed throughout their volume. The shape of each superparticle is 
that of a ring of rectangular cross section. 

The velocity of a superparticle has three components U, , cO , and u, . Since the 
superparticle is ring shaped, D, refers to the speed with which it is expanding 
(contracting) and z’@ to the speed with which it rotates about the axis. u, is the usual 
axial component of velocity. 

The charge density p of a superparticle is given by 

p = n,(e/2mArAz), (16) 

where IZ, is the number of electrons per superparticle, e the electronic charge, 
r the radius of the superparticle, dr its radial thickness, and dz its axial thickness. 

The three components of the current density of a superparticle are given by 

J, = n,(et’,/2mArAzj, 

JO = n,(ev,/2mArAz), 

J, = n,(ev,/2mArAz). 

(17) 

(18) 

(19) 

The field equations are solved in a domain that is subdivided by a finite difference 
mesh. The extent of this domain is given by 

where rj = jAr, zi = idz, R, = J,Ar, R, = Jz Ar, Z, = Z,Az, and Z, = Z,Az. 
The charge and current densities must be known on the mesh points. The 

equations of motion yield the positions of the centers of the superparticles. These 
positions, usually, do not coincide with any mesh point. Therefore, some method 
must be devised whereby we can obtain the charge and current densities at the 
mesh points from the known positions and velocities of the superparticles. In the 
method that we use, the charge and current of a superparticle is shared among each 
of the four neighboring grid points in accordance with the standard area-weighting 
procedure. A simple way of visualizing this procedure is shown in Fig. 2 (we assume 
the charge to be uniformly distributed over the shaded region). Let the center of the 
particle be located in the zone (i,,j) and let its coordinates be (z, r). The regions 
of the particle that are assigned to the neighboring grid points are denoted by 
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A, , A, , A, , and A, . A, is allocated to (i,j), A, to (i + l,,j), A, to (i,,j -1 I), and 
A, to (i + 1, ,j + 1). The values of the A’s are given by 

A, = [(i + 1)dz - z][(j + I)dr - I], 

A, = (2 - i&)[(j + 1)dr -- r], 

A, = [(i f I)Llz - z](r -,jdr), 

A, = (z - iLlz)(r -,jLlr). 

j+l 

I ------ ---- 

r--- 

.-----k ----_ ----- 

l 
I 

j-l , 

I 
I 

i-l i+1 

FIG. 2. Area weighting scheme for a superparticle. 

To obtain the current and charge densities at a mesh point, the contributions 
from all the superparticles to that mesh point are summed. 

D. Equations ~$Motion 

We assume that the canonical angular momentum is a constant of the motion 

m,yr28 + (e/c) rA, = P, = const. (20) 

It is convenient to introduce the function 

$ = (Y/C) r% (21) 
so that 

I) = P,lm,c - (e/w@) rA, (22) 
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and since we are assuming that all the particles have the same P, we can use # 
in place of A, . The rationale for introducing # is that it obviates the necessity 
of calculating a0 , as will be apparent shortly. 

We now introduce the dimensionless velocity u defined by 

where 

u = (ylch 

y = (1 - ,Z/c2)-1/2. 

(23) 

Substituting Eq. (23) into the expression for y we get 

y = (1 + u,2 $ z&2 + &2)l/“. (24) 

From Eq. (21) we have $ = rue ; hence 

y = (1 + uV2 + uz2 + (#2/r2))1/2. (25) 

If we differentiate Eq. (23) with respect to time and rearrange the terms, we get 

i = (C/Y) f4 - (C/Y2) ju, 9 
2 = (c/y) 6, - (c/y2) $4, . (26) 

Assuming axial symmetry, we have the following equations of motion: 

(27) 
. . 84 

mob + ~4 = --e z - ; at ’ J!4 + : [i. (% - -f&j + rB $$I. (28) 

Substitution of Eqs. (23) and (26) into Eqs. (27) and (28) yields for the radial 
equation of motion 

c a # du, -- -- e &#I e aA,. 5 u, aA, 
dt--yar 2r2 -___- i 1 m,c ar -[ 

aA, 
moc2 at Y i 

__ - 
az 7' )I (29) 

Similarly the axial equation of motion becomes 

c 2 #” duz e a+ e aA, CA 
& --qy p- -~-- t ! ~ [ ~ + $ UT ($$ - 7&q]. 

mot a.2 moc2 at (30) 
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E. Dimensionless Formulation 

We now introduce the dimensionless function ii defined by 

367 

(31) 

In order to evaluate the denominator we consider an equilibrium orbit in a uniform 
vacuum field. For such a field it is true that 

A,(r, 2) = 4 By, (32) 

where B, is that axial component of the field. From the radial equation of motion 
we have 

m,yr,,@ = -(e/c) rOeBO , 

where rO is the radius of the orbit. Hence 

PO = -(e/c) B,,ro2 + 1/2(e/c) B,,r02 = -1/2(q’c) Bg,,” 

and 

tT = -(2m,c2/eB,,r,2)$. 

We now introduce the rest of our dimensionless variables 

R = r/r,, , Z = z/r0 , 7 = et/r, 

& = &l&r,, , a, = 2rA,/B,r,*, a, = 2A,/B,,r,, x = (e,/m,c2)# 

b = B,iBo , b, = B,/B, , bo = BdB, 

and 

e, = E,./BO , e, = &I&, eB = EOIB, . 

From these definitions and Eqs. (I), (22), and (39) 

ji = 1 + 2Rti, 

6, = -(1/2R)@i;/&Z), b, = (1/2R)(a@R). 

be = U/W@a,/~~> - (1/2)(%/W, 

e, = -(el&or&~xl~R> - ( 1 /W(WaT), 

e, = -@lBorore)(~x/~~) - (WWa,/~~), e, = -(1/2R)(ip/2~), 

(33) 

(34) 

(35) 

06) 

(37) 

(38) 

(39) 

(40) 

(41) 
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where e, , e, , and e, are the dimensionless components of the electric field and 
re = e2/moc2 is the classical radius of the electron. 

It is convenient to let 

tL = PC + II> (42) 

where Z+ represents the vacuum field and Z.L represents the field of the E layer. The 
function p, satisfies the equation 

a2 PC /a72 - a2pc/az2 - R(a/aR) ((l/R)(a,,/aR)) 

We introduce the parameter 

Cl = -eB,,r,/2m,c2 = -(2.93 x 10-4) B,,ro 

and define the function P(R, Z, T) by 

P = (l/2) C12(/?/R2). 

0. (43) 

(W 

(45) 

Using Eqs. (35)-(37) and (44) we can write the equations of motion (29) and (30) 
in dimensionless form as follows: 

du r= I ap 
dr Y aR 

(46) 

du,- I ap - --- 
dr Y az 

We now introduce the dimensionless quantities Ze , Z, , I,, and Z, corresponding 
to the dimensionless current and charge densities 

1 z y c JB = _ 2n,re 
0 AR AZ r,, 

c &, 

Z.=$RcJT= B,A;&,2C~, 1 (49) 

(48) 
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where we used Eqs. (21), (23), (35), and (36) to write the right-hand sides of Eqs. 
(16)-(19) in terms of dimensionless quantities. The symbol C in the above equations 
represents a sum over the contributions of all the particles in that region of space, 
as explained in Section I-B. 

Finally, using Eqs. (36) and (37) we can write the wave equations (4)-(7) in 
dimensionless form: 

The boundary conditions in dimensionless form are 

p(R, Z) = 0 at all boundaries, 

x(R, 2) = 0 at all boundaries and at the resistor layer, 

az(R, Z) = 0 at R = R, , R2 for all 2, 

ar(R, Z) = 0 at Z = -Z, , Z, for all R, 

(aaJaR) (R, Z) = 0 at R = R, , R2 for all Z, 

(a/aZ)a, (R, Z) = 0 at Z = -Z, , Z, for all R. 

III. SPECIAL FEATURES OF THE ASTRON MODEL 

A. Current in the Resistors 

(52) 

(53) 

(54) 

(55) 

(56) 

(57) 

(58) 

(59) 

(60) 

(61) 

The function of the resistors is to extract energy from the E-layer electrons. 
The resistors consist of a large number of very fine (1.5 mil) wires. They are 
wound on a cylindrical frame of fixed radius such that the current in them flows 
in the 8 direction only. It is convenient to replace the individual resistor wires with 
a resistor sheet. 

The current density in the resistors is given by j,,, = osEe , where ug is the 
conductivity of the resistor sheet and E0 the 0 component of the electric field at 
the resistors. E0 is calculated from E8 = -(l/c)(aA,/&), where A, is the 0 com- 

SSI/II/3-5 
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ponent of the vector potential. The current density ,js , given above, cannot be 
used in the field calculation since no allowance has been made for the fact that the 
radial thickness of a zone Ar is much greater than the radial thickness of the 
resistor sheet. The proper current density is given by 

he, = -(~e~e/Ar)(l/c>(~Ae/~f> at I’ = rrer; , 
(62) 

Jsres = 0 at r # rres , 

where 6, is the radial thickness of the resistor sheet, and rres is the radius of the 
resistor layer. In the astron experiment and in the model there are two resistor 
layers-an inner layer at a radius of 30 cm and an outer layer at a radius between 
50 and 60 cm. The resistor radius can be varied as a function of z, and the resistor 
configuration is one of the variable features of the experiment and the model. 

B. Injection Scheme 

The number of superparticles injected per time step is given by NTA~/~pL, 
where Nr is the total number of particles that will be used per pulse, AT is the time 
step, and 7pL is the pulse length. 

A superparticle is a ring of circulating charge. The current of this ring is given 
by n,e/rB , where e is the electronic charge, nP is the number of electrons per 
superparticle, and TV is the cyclotron period. Hence the current injected per time 
step is given by 

I,, = (W/d ~%A~TPL). 

If a current Z is injected into astron, we have, at the end of one cyclotron period, 
a current Z circulating in the machine. Therefore the current that has to be injected 
per time step is (AT/T~)Z. Hence 

n,. = ZTpL/eNT . (63) 

Each time step, during injection of a pulse, the required number of superparticles 
are injected at a set of Z positions in the neighborhood of the injector location. 
We can inject the particle into a region where the radial force on it is small in 
order to minimize early radial fluctuations. For a given Z we calculate R such 

that Fv in Eq. (46) is zero, where R is in the neighborhood of the injector. 

C. Neutralization Scheme 

To see how we can incorporate the neutralization phenomenon into the model, 
we must look at the process in detail. We will do so by looking at one region in 
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space and see how neutralization proceeds with time. Consider a small region 
of neutral gas into which a bunch of electrons has entered. The electrons remain 
in this region for a time 6t. By the time they leave, they will have undergone ni 
ionizing collisions. Since the incident electron bunch has a high electric field 
associated with it, the cold electrons that are freed by the ionizing collisions are 
accelerated out of the region. When the electron bunch leaves, the region contains 
12~ positive ions. Now let another bunch of electrons with the same density and pulse 
length enter this region. It too undergoes ionizing collisions and the electrons 
liberated by these collisions are again accelerated out of the region, only not as 
fast as the first ones since the electric field of the second bunch is slightly masked 
by the field of the residual ni positive ions. If we now imagine similar bunches 
entering the region in succession, the number of positive ions in the region will 
build up until the number of ions equals the number of electrons in the incident 
beam. 

Each region in space must be given a certain amount of positive charge. This 
amount depends on how much cumulative time electrons have spent in that region. 
Therefore, the net amount of charge in a given region at a given time is the number 
of electrons in the region minus the number of positive ions in the region. 

As explained earlier, the r, z configuration space in the model is divided into a 
finite-difference grid. The smallest region in the model is that of a zone. Each zone 
is, therefore, assigned a number of positive ions commensurate with the amount 
of neutralization that occurred in that zone. 

Let us consider a beam of A4 electrons circulating in one zone. The number of 
ionizing collisions made by this beam of electrons in a distance cat is given by 
ni = NQMcGf, where N is the number of gas atoms per cm3, Q is the ionization 
cross section, and M is the number of beam electrons, and c is the velocity of light. 
Note that the ratio tti/M = NQc& is independent of electron density. This ratio 
can also be interpreted as the fraction of the beam neutralized in time 6t. Replacing 
electrons with superparticles, we can say that NQdt is the fraction of the super- 
particle charge that is neutralized in time 6t. If we assume that the background 
gas is ideal, the pressure P is given by P = NKT. Letting T = 300X, writing 
the pressure in microns and 6t in nanoseconds, and using Q = 2.35 x IO-l4 cm2, 
we have NQc& = 2.5 x lo-” PSt. 

We now summarize the process. Let M superparticles enter a zone. After one 
time step, 47, they contribute ni = 2.5 x 1O-4 MPAt positive ions to that 
space. 

At present we do not allow a region to have a net positive charge. If the number 
of positive ions exceeds the number of electrons the net charge in the region is 
assumed to be zero. The rationale for this is that a region which has a net positive 
charge very quickly sucks in enough cold electrons from the background to 
neutralize that charge. 
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When we use the neutralization option, we are in effect creating a plasma. This 
plasma can and does carry currents. These currents are neglected. It is true that 
in some circumstances the axial plasma currents may be comparable in magnitude 
to the axial E layer currents, resulting in serious errors in the calculation of A, . 
These circumstances arise later in time after a significant amount of neutralization 
has taken place. However, early in time when the particles are being injected and 
are traveling down the ramp in an essentially unneutralized region, the axial 
currents due to the particles are much greater than the axial plasma currents. 
This is due to the large axial velocities (~0.5 c) which the particles attain. The 
location of the crossover point depends on the individual case. 

While it is true that there are radial plasma currents as well, it is unlikely that 
they are comparable to the radial E-layer current since the plasma electrons are 
cold and would therefore have to diffuse across the field lines. 

The present neutralization scheme causes an error in the energy check since, by 
turning off a part of the negative charge, the energy in the electric field is diminished. 
This energy loss is not included in the energy check. 

IV. DIFFERENCE EQUATIONS 

The field equations are solved on a finite difference mesh. The mesh spacing is 
given by AR = h, AZ = mh. The position on the mesh is given by R, = jh, 
Zi = imh, where -I1 < i < I2 and J1 <,j 6 J, . A given time is denoted by an 
integral number of time steps, i.e., TV = HAT, where n = 0, 1, 2, . We now 
introduce the notation & = p(Rj , Zi, T,), etc. 

The difference approximation that we use in solving the field equations is called 
the Alternating Direction Implicit (ADI) method. In the first half-time step the 
equation is implicit in the R direction and explicit in the Z direction, and in the 
second half time step the equation is explicit in R and implicit in Z. 

The difference equation corresponding to Eq. (53) for the first half-time step is 
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and the equation for the second half-time step is 

where c2 = -4nlch ae6, for R = R,,, and c2 = 0 for R f R,,, . A similar pair 
of difference equations is used to approximate Eq. (52). The difference equation 
corresponding to Eq. (55) for the first half-time step is 

x;++1f2 - 2>(; + x?y2 

@J +I2 
= + [(2j {- l)(x:,JtF - ~7”~) - (2j - l)($T1” - XT,;?:‘)] 

L x;+1.j - 2x: + xclj 

m2h2 ‘- + I,“lj Y (6W 

and the equation for the second half-time step is 

’ 2jh2 
-L- [(2.j + 1)(x?,;::’ - xEkfli2) 

- (2j - l)(xt?l’2 - x~~~~:“)] + I~~“‘. (65b) 

A similar pair of difference equations is used to approximate Eq. (54). The method 
of solving the four pairs of implicit difference equations is the standard algorithm 
for solving linear tridiagonal systems and is discussed in Ref. [4]. 

An alternate method of solving the field equations is the following explicit 
scheme, shown only for the p equation for the first half-time step: 
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We compared the two methods by running a sample problem for 1000 cycles 
using the explicit scheme. We found that the results agree to within 5 % or better 
in the field quantities, and within 1 % in the particle distribution functions. 

The principal difference between the two schemes lies in the fact that the AD1 
has inherent damping, while the explicit scheme does not. This damping is not 
altogether unwelcome. For instance, it tends to decrease the errors introduced by 
our neutralization scheme. These errors arise from the discontinuous reduction 
of the charge density caused by the neutralization process. These discontinuous 
charge reductions create spurious waves which are damped by the ADI scheme. 

Furthermore, we have found that the Lorentz condition 

V . A + (l/c) (@/at) = 0 

is more closely approximated by the ADI scheme. This can be attributed to the 
damping characteristics of the scheme since the source of the error is primarily 
in the short wavelengths. 

The effect of not satisfying the Lorentz condition is to create false charges. This 
can be seen by writing the wave equation without assuming that the Lorentz 
condition is satisfied. In this case, the wave equations becomes 

We evaluated the quantity -(l/c)(a/&)[V . A + (l/c)(+/at)] in two test cases. 
In one test case we used the explicit scheme, and in the other we used the implicit 
scheme. In the test case, we injected 1000 particles 0.02 cm from the left end wall 
into a region with 50 axial zones. Each particle had a current of 1 A. Furthermore, 
each particle was given a slightly different axial velocity so that at the end of 500 
cycles the particles would be uniformly spread over the central 25 axial zones. 
We compared the results at cycles 600 and 1000. The total real charge (47rp) was, 
in dimensionless units, 5.77 x 10-l, and remained constant during the run. 
When the fields were calculated by using the explicit scheme, the total false 
(-(l/c)(a/at)[V . A + (l/c)(&$/at)]} charge created was, again in dimensionless 
units, -1.9 x 1O-2 at cycle 600 and 2.75 x 1O-3 at cycle 1000. Whereas, when 
we used the implicit scheme, the false charge at cycle 600 was -9.35 x 10e5 and 
-1.8 x 10-6at 1000. 

The equations of motion (46) and (47) are approximated by the centered 
difference equations 

where 

(up” - u:-~)/~L~T = -Fpn/y”, (66) 

(24;‘” - u32A7 = -F,“ly”, (67) 

y” = (1 + (Urn)2 + (U,“)2 + ClZ[(rr;~)2/R”]}‘~“. 
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The superparticle positions are then obtained from 

( Rn+l - R”)/Ar = (u:” + urn)/2yn , (681 

(Z n+l - z”)/AT = (u;+l -1 u,*)/2y”, (69) 

where we have retained u,.~, uzn in order to compute the above average. (It is 
unnecessary to evaluate y at T,+~/~ since y changes slowly).’ 

All the above quantities U, , U, , y, Z, R, F, , F, are evaluated at the particle 
centers. Since F, and F, are calculated from the fields which are given at the mesh 
points only, we use linear interpolation to get their values at the particle centers. 

This scheme has two coupled solutions-one consists of velocities at even- 
numbered cycles and positions at odd-numbered cycles, the other consists of 
velocities at odd-numbered cycles and positions at even-numbered cycles. These 
solutions tend to grow apart so they must be synchronized periodically, usually 
every hundred time steps. The method for doing this is the following initialization 
procedure which is also used for obtaining starting values. We first obtain trial 
values from 

tur* - u,“)lAr = -F,“ly”, 

(%* - u,“)/Ar = -FZn/y”, 

(R* - R”)/A7 = (u,* + u,11)/2y”, 

(z* - za)/A, = (u,* + u,n)/2yn. 

We then obtain new values at T,+~ from 

n+1 
k - u,.~)/AT = -(FT* + F,n)/2y”, 

(2.4: +l - ~,“)/AT = -(F,* + F,“)/~Y”, 

CR llfl - Rn)/Ar = (UT+’ + 24”)/2y”, 

(Z n+l - zn)/A7 = (u:” + uZ”)/2y”. 

In the above, F,* and F,” are based on uT*, uz*, R*, Z* and the fields at time n.2 

1 We have since found that it is necessary to evaluate y  at 7,+: , and we use an iterative procedure 
to do so. 

2 We have since changed the difference scheme and have employed an iterative procedure so 
as to eliminate the need for synchronization. 
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V. CONSERVATION OF ENERGY 

During the calculation we independently monitor the number of particles and 
total energy present in the system. Particles can be lost at all of the physical 
boundaries in the r-z domain and we count the particles lost at each boundary 
for each pulse injected. 

The total energy present in the system at a given time is the sum of the energy 
in the electromagnetic field and the kinetic energy of the particles. The energy 
in the field is 

& jT”df3 j-[dz j;=rdr[B”+ EZ]. 

If we divide the above expression by the constant r,3B02/4, we obtain the dimension- 
less quantity 

gEM = jT:, dz j:: R dR[6,” + bo2 + bs2 + er2 + eg2 + ez2], (70) 

where we use the definitions of Eqs. (40) and (41). 
The kinetic energy of a superparticle is ney,,moc2, where v is the particle index; 

hence the total energy of all the particles is 

T = 4vw2 N ____ c YYT Bo2r03 u=l 
(71) 

where we have divided by ro3B,,2/4. 
The amount of energy dissipated in one time step, in one axial zone AZ of the 

resistors is 

where j,,,, is given by Eq. (62). We use the dimensionless current 

If we sum over axial zones and use the dimensionless variables, we have 

(72) 

where we have divided by ro3B02/4. We then define the total energy dissipated in the 
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resistors up to time IZ by substituting Eq. (72) into Eq. (73) and summing the 
contributions of each time step, 

(74) 

When a particle hits the wall, the only energy lost is its kinetic-energy, because the 
image charge and image current cancel the field of the particle as it nears the wall. 
We denote this energy by 

where Nioss is the number of particles lost. Therefore, the quantity 

must be constant after injection has stopped. The quantity gzt is computed for 
both inner and outer resistor layers and the above expression includes their sum. 

VI. COMPUTATIONAL RESULTS 

In a typical astron run, a beam of relativistic electrons is injected into a region 
in which a solenoidal mirror field has been established. The beam current varies, 
depending on the experiment, from 100 to 800 A. Similarly, the pulse length varies 
from 100 to 300 nsec. The average electron energy is about 5.5 MeV. The back- 
ground pressure varies from about 2 ,u to about 50 p. Generally, it is about 10 CL. 
The shape of the applied field depends on the experiment. When the object is to 
optimize trapping (as it usually is) the shape of the field near the injection point is 
that of a shallow mirror, whereas the field at the far end of the intended trapping 
region is a steep mirror. 

In Ref. [6] we showed results for the injection and trapping of a pulse of 800 A 
of 200 nsec duration. We represented that pulse by 21 000 superparticles. When 
that pulse had settled down in time, we injected a second 800-A pulse of IOO-nsec 
duration, which we represented by 10 500 superparticles. 

In this paper we show the results of overlapping five consecutively injected 
pulses. Each succeeding pulse is injected after the previously injected particles have 
reached steady state. We use the same applied magnetic field as in the previous 
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case which is computed from a set of circular coils corresponding to an actual 
experimental configuration. The physical parameters for the problem are: 

Injection current 

Pulse length 

Axial injection velocity 

Radial injection velocity 

Number of particles injected per pulse 

Number of pulses 

Background pressure 
Magnetic field 

Resistance 
Resistor radius 

Tank radius (inner) 

Injection radius 

Injection energy 

Iijl------ 

8OOA 

100 nsec 

0.1 c 

0 

4500 

5 

10 i-L 
Fig. 3 

7 S/square 
52 cm 

72 cm 

-4Ocm 

5.28 MeV 

3081 ' 1 
-640 -320 0 320 640 

Axial position - cm 

FIG. 3. Plot of & vs z at two radial positions, R = 0 and R = 40 cm at 0.132 nsec. 

The mesh parameters were: 

Number of axial zones 100 

Number of radial zones 18 

Axial space step dz 13 cm 

Radial space step dr 4cm 

Time step (field equation) 0.067 nsec 

Time step (particle equation of motion) 0.267 nsec 

Total No. of particles injected 22 500 
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The particles were injected into the second zone from the left end boundary. 
Injection of the first pulse begins at t = 0 and ends at t = 100 nsec (Fig. 4). We 
see the characteristic dip in phase space (Fig. 4a). By t = 148 nsec, the leading 
edge of the first pulse has reached the end of the far mirror (Fig. 5). From Fig. 5c 
we see that a clump has formed on the trailing edge of the pulse. The reason for 
this is that the particles injected last have overtaken some of the particles injected 
earlier (Fig. 5a). By this time the injection region has been sufficiently ionized so 
that the magnetic attraction between the particles exceeds the electrostatic 
repulsion. Hence, the particles in the trailing edge see a net force drawing them 
toward the other particles. This force is greatest on the particles injected last since 
the only force that they see is from the right. 

In marked contrast, the particles injected first are put into a region in which 
there has been no ionization at all. Between these particles, the electrostatic repelling 
force exceeds the magnetic attracting force. Hence, they are accelerated away from 
the other particles. When the leading particles reach the far mirror, those particles 
in the extreme leading edge acquire enough energy to climb the far mirror and 
leave the system. These are the only particles from the first pulse that are lost. 

Figure 6 shows the state of the system at t = 268 nsec. We see that the particles 
in the dip move much more slowly than the other particles. All particles continue 
to bounce back and forth between the two mirrors, thermalizing in the process. 
By t = 1300 nsec, the system has almost reached steady state (Fig. 7a and 7g). 
The bottom of the well is located 10.8 m from the injection end. Figure 7i shows 
the radial variation of Jo at the bottom of the well. There are 4461 particles in the 
system. These give 9517 circulating amperes. Figure 7j shows that the axial field 
at the bottom of the well is 10% weaker than the corresponding vacuum field. 

Injection of the second pulse began at t = 1300 nsec. Figure 7 shows the second 
pulse coming in at the left end. Injection of this pulse ceased at t = 1400 nsec 
(Fig. 8). Comparison of Figs 4c and 8c shows that there is considerably more self- 
pinching in the second pulse. This is because the region through which the second 
pulse is moving has been partially ionized by the first pulse. A consequence of this 
greater self-pinching is the stronger coupling between the second pulse and the 
resistors. This is readily apparent when one compares the currents induced in the 
resistors by the respective pulses (Figs. 4d and Sd). 

The second pulse reaches the end of the far mirror by t = 1520 nsec (Fig. 9). 
Figures 9a, c, and d clearly show that the second pulse has split into a number of 
distinct bunches. From Figs. 9a and e we also see that a number of particles from 
the second pulse have left the system by climbing the far mirror. This time, however, 
the accelerating force which provides these particles with sufficient energy to leave 
the system originates with the particles of the first pulse which attract the particles 
from the second pulse. The major loss of particles from the second pulse occurs 
at this time. 
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FIG. 4. State of the system at 100 nsec: (a) plot at the particle positions in Z - V, phase space; 
(b) plot of B, vs Z; (c) current distribution of the particles; (d) current distribution in the resistors; 
(e) plot of the particle position in configuration space; (f) plot of the particles in R - V, phase 
space; (g) Z velocity distribution; and (h) R velocity distribution. 
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State of the system at 148 nsec: (a) plot at the particle positions in Z - V, phase 
space; (b) plot of B, vs Z; (c) current distribution of the particles; (d) current distribution in the 
resistors; (e) plot of the particle position in configuration space; (f) plot of the particles in R - VR 
phase space; (g) Z velocity distribution: and (h) R velocity distribution. 
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State of the system at 268 nsec. (a) plot at the particle positions in Z - V, phase 
space; (b) plot of & vs Z; (c) current distribution of the particles; (d) current distribution in the 
resistors; (e) plot of the particle position in configuration space; (f) plot of the particles in R - V, 
phase space; (g) Z velocity distribution; and (h) R velocity distribution. 
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FE. 7. State of the system at 1308 nsec: (b) plot at the particle positions in 2 - V’, phase 
space; (6) plot of B, vs Z; (c) current distribution of the particles; (d) current distribution in the 
resistors; (e) plot of the particle position in configuration space; (f) plot of the particle position 
in R - V, phase space; (g) Z velocity distribution; (h) R velocity distribution; (i) radiat variation 
of the current density at Z = 10.8 m; and (j) radial variation of Bz at Z = 10.8 m. 
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State of the system at 1400 nsec: (a) plot at the particle positions in Z - V, phase 
space; (b) plot of B. vs Z; (c) current distribution of the particles; (d) current distribution in the 
resistors; (e) plot of the particle position in configuration space; (f) Plot of the particle position 
in R - V, phase space; (g) Z velocity distribution; and (h) R velocity distribution. 
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FIG. 9. State of the system at 1520 nsec: (a) plot at the particle positions in Z - V, phase 
space; (b) plot of B. vs Z; (c) current distribution of the particles; (d) current distribution in the 
resistors; (e) plot of the particle position in configuration space; (f) plot of the particle position in 
R - VR phase space; (g) Z velocity distribution; and (h) R velocity distribution. 
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By t = 2200 nsec, the particles from the two pulses have become thoroughly 
intermixed (Figs. lOa, e, and f) and the system has reached steady state (Fig. log). 
From Figs. 10e and f we see that a few particles have collided with the resistors. 
With 18 239 amperes circulating in the system, the field at the bottom of the well 
has been reduced to 80 % of its original value (Fig. 1Oj). 

Injection of the third pulse began at t = 2200 nsec and ended at t = 2300 nsec 
(Fig. 11). The bulk of the third pulse reaches the end of the far mirror by t = 
2414 nsec. As in the two previous pulses, some of the particles of the third pulse 
climb the far mirror and leave the system (Fig. 12a and e). In addition to this 
loss a steady drain of particles, primarily due to collisions with the resistors, is 
seen from then on. The system reaches steady state by t = 2732. By this time, 
1115 particles have left the system. More than half of these did so by colliding with 
the resistors. We allowed the problem to run another 360 nsec before injecting the 
next pulse. During this time interval, an additional 494 particles have left the 
system. Most of these were wiped off by the resistors (Fig. 13). Comparison of 
Figs. 7i and 13i reveals that the E layer has virtually doubled in thickness. The 
25 450 circulating amperes that are presently in the system yield 3 1 % field reversal 
at the bottom of the well (Fig. 13j). 

Injection of the fourth pulse began at f == 3100 nsec and ended at t = 3200 
(Fig. 14). The particles from this pulse reach the far mirror by t = 3308 nsec 
(Fig. 15). Once again, some particles leave the system by climbing the far mirror 
(Figs. 15a and e). Steady state is again reached by t = 3668 nsec. Of the 18 000 
particles that had been injected, 3753 were lost. During the last 567 nsec, from 
t = 3100 until t = 3668, 2144 had left the system. The vast majority of them were 
lost due to collision with the resistors. Once again we allowed the problem to run 
an additional 333 nsec before injecting the next pulse. During this time interval 
an additional 853 particles had been lost, primarily due to collision with the resistors 
(Figs. 16e and f). There are now 28 574 amperes circulating in the system. The 
field is now 68 % of its vacuum value (Fig. 16j). 

Injection of the fifth and final pulse began at t = 4000 (Fig. 16) and ended at 
t = 4100 (Fig. 17). The particles reach the far mirror by t = 4200 (Fig. 18). 
Steady state is again reached by t = 4536 nsec, 536 nsec after we started injecting 
the fifth pulse. During this time interval, 3156 particles were lost. We allowed the 
system to run an additional 184 nsec until t = 4720 (Fig. 19). During this time 
interval, an additional 571 particles have left the system. This brings the number 
of particles lost since we started injecting the fifth pulse to 3727. This is equivalent 
to 83 % of the particles injected in the fifth pulse. The remaining particles 
yielded a circulating current of 30 222 A. This resulted in 35 % field reversal 
(Fig. 19j). 

In total, 8333 particles were lost (Fig. 20). This is almost equal to the number 
of particles injected in two pulses. The vast majority of these particles were lost 
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FIG. 10. State of the system at 2200 nsec: (a) plot at the particle positions in Z - V, phase 
space; (b) plot of B, vs Z; (c) current distribution of the particles; (d) current distribution in the 
resistors; (e) plot of the particle position in configuration space; (f) plot of the particle position in 
R - VR phase space; (g) 2 velocity distribution; (h) R velocity distribution; (i) radial variation 
of the current density at Z = 10.8 m; and (j) radial variation of B, at Z = 10.8 m. 
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FIG, 11. State of the system at 2308 nsec. (a) plot at the particle positions in Z - V, phase 
space; (b) plot of B, vs Z; (c) current distribution of the particles; (d) current distribution in the 
resistors; (e) plot of the particle position in config~tion space; (f) plot of the particle position 
in R - Va phase space; (g) Z velocity distribution; and (h) R velocity distribution. 
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FIG. 14. State of the system at 3200 nsec: (a) plot at the particle positions in 2 - V, phase 
space; (b) plot of B, vs Z; (c) current distribution of the particles; (d) current distribution in the 
resistors; (e) plot of the particle position in configuration space; (f) plot of the particle position in 
R - V, phase space; (g) Z velocity distribution; and (h) R velocity distribution. 
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State of the system at 3308 nsec. (a) plot at the particle positions in Z - V, phase 
space; (b) plot of B, vs Z; (c) current distribution of the particles; (d) current distribution in the 
resistors; (e) plot of the particle position in configuration space; (f) plot of the particle position in 
R - V, phase space; (g) Z velocity distribution; and (h) R velocity distribution. 
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FIG. 16. State of the system at 4000 nsec: (a) plot at the particle positions in Z -- V, phase 
space; (b) plot of 3, vs 2; (c) current distribution of the particles; (d) current distribution in the 
resistors; (e) plot of the particle position in configuration space; (f) plot of the particle position 
in R - Vn phase space; (g) 2 velocity distribution; (h) R velocity distribution; (i) radial variation 
of the current density at Z = 10.8 m; and (j) radial variation of B, at 2 = 10.8 m. 
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FIG. 17. State of the system at 4108 nsec: (a) plot at the particle positions in 2 - V, phase 
space; (b) plot of B, vs Z; (c) current distribution of the particles; (d) current distribution in the 
resistors; (e) plot of the particle position in configuration space; (f) plot of the particle position 
in R - VR phase space; (g) Z velocity distribution; and (h) R velocity distribution. 
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State of the system at 4200 nsec: (a) plot at the particle positions in 2 - V, phase 
space; (b) plot of B, vs Z, (c) current distribution of the particles; (d) current distribution in the 
resistors; (e) plot of the particle position in configuration space; (f) plot of the particle position 
in R - V, phase space; (g) Z velocity distribution; and (h) R velocity distribution. 
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FIG. 19. State of the system at 4720 nsec: (a) plot at the particle positions in Z - V, phase 
space; (b) plot of B, vs Z; (c) current distribution of the particles; (d) current distribution in the 
resistors; (e) plot of the particle position in configuration space; (f) plot of the particle position 
in R - vR phase space; (g) Z velocity distribution; (h) R velocity distribution; (i) radial variation 
of the current density at Z = 10.8 m; and (j) radial variation of B, at Z = 10.8 m. 
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FOG. 20. Plot of number of particles vs time. 

due to collisions with the resistors (Table I). During the first two pulses, particle 
loss is due primarily to particles climbing the far mirror. About 450 particles were 
lost in this way during these two pulses. However, during the last three pulses, 
particle loss is due primarily to collisions with the resistors. 

Detailed comparison of these results with experiment is at present impossible 
because the astron group has not yet achieved a net injection current of 800 A. 
However, there are certain similarities between the higher current computations 
and the lower current observations. For instance, the time that it takes for an 
injected pulse to reach equilibrium is observed to be between 1 and 2 p sec. The 

TABLE I 

Summary of Particle Losses 

Pulse 

Number Number 
particles particles 
injected lost 

Number Number 
particles particles 
lost at lost at 

left-end right-end 
boundary boundary 

Number Number 
particles particles 

lost at lost at 
resistors cantilever 

1 4500 2923 8 78 2762 0 

2 4500 2742 148 341 2258 0 

3 4500 1664 69 176 1419 0 

4 4500 766 27 134 605 0 

5 4500 236 43 177 16 0 
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computed time is about 1.4 psec. It is also observed that the incoming pulse 
contains a rapidly moving leading edge of low amplitude followed by a slower 
moving clump at high amplitude. The same structure is seen in Fig. 4c. 

In looking at the current density graphs, Figs. 8c, lOc, 13c, 16c, and 19c, it is 
evident that the width of half maximum tends to decrease with time. The most 
dramatic decrease occurs between the second and the third pulses. At t = 2200 
nsec the width at half maximum was ~92 cm, whereas at t = 3100 is was -69 cm. 
The same phenomenon has been observed experimentally. 

The results described indicate that, in the regime for which the model is valid, 
the idea of building an E layer by injecting a succession of pulses is workable. 
However, the particles from only three pulses were trapped. The maximum current 
density achieved was 175 A/cm, resulting in -35 % field reversal. It appears that 
the physical configuration of the system will have to be modified if more particles 
are to be trapped. The obvious modification is to remove the resistors from the 
trap region. This region has an axial extent of about 3m, and its center is located 
about llm from the injection point. Removal of the resistors from this region 
should still leave enough resistors in the ramp region to aid in trapping. 

That a reversed field solution exists is not in doubt. Killeen [I, 4, 51 found such 
solutions with the Vlasov code LAYER. In Ref. [S] an example is given of a 
reversed field solution corresponding to 4000 A injection into a short magnetic 
mirror region of 180 cm length with injection at r. = 30 cm. The layer was com- 
pletely neutralized and the field was obtained from a solution of the A0 equation 
[Eq. (53)] only. The same problem was run with the present particle code, and at 
the end of 300-nsec injection, the amount of field reversal was the same as in the 
earlier problem. The Cornell group also obtained reversed field configurations 
experimentally with high-current injection [7]. 

The results to date are preliminary. Our aim in constructing this model was 
to make it into a flexible experimental tool. We have made provision for varying 
a large number of parameters. A large number of graphs are also provided. At 
present, we can vary the injection current, the pulse length, the number of pulses, 
and the number of particles used. The resistance and the position of the resistors 
and their configuration are variable. The applied magnetic field can be evaluated 
in two distinct ways, through the use of one of two analytical models or from a 
computer program called COILS, which calculates the field at any desired point 
in space due to a set of coils whose centers are on the axis. In addition, we can 
include an arbitrary toroidal field. All the above variables can, with a minor 
modification, be made time dependent. 

In addition to astron, the model can be used to simulate many aspects of the 
Electron Ring Accelerator. 
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